Se p 20 03 CYCLIC MAPS IN RATIONAL HOMOTOPY THEORY

نویسنده

  • BRUCE SMITH
چکیده

The notion of a cyclic map g : A→ X is a natural generalization of a Gottlieb element in πn(X). We investigate cyclic maps from a rational homotopy theory point of view. We show a number of results for rationalized cyclic maps which generalize well-known results on the rationalized Gottlieb

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Se p 20 03 SEIBERG - WITTEN - FLOER STABLE HOMOTOPY TYPE OF THREE - MANIFOLDS WITH b 1 = 0

Using Furuta's idea of finite dimensional approximation in Seiberg-Witten theory, we refine Seiberg-Witten Floer homology to obtain an invariant of homology 3-spheres which lives in the S 1-equivariant graded suspension category. In particular, this gives a construction of Seiberg-Witten Floer homology that avoids the delicate transversal-ity problems in the standard approach. We also define a ...

متن کامل

ar X iv : m at h / 00 10 12 6 v 1 [ m at h . A T ] 1 2 O ct 2 00 0 RATIONAL OBSTRUCTION THEORY AND RATIONAL HOMOTOPY SETS

We develop an obstruction theory for homotopy of homomorphisms f, g : M → N between minimal differential graded algebras. We assume that M = ΛV has an obstruction decomposition given by V = V0⊕V1 and that f and g are homotopic on ΛV0. An obstruction is then obtained as a vector space homomorphism V1 → H(N ). We investigate the relationship between the condition that f and g are homotopic and th...

متن کامل

Rationalized Evaluation Subgroups of a Map Ii: Quillen Models and Adjoint Maps

Let ω : map(X, Y ; f) → Y denote a general evaluation fibration. Working in the setting of rational homotopy theory via differential graded Lie algebras, we identify the long exact sequence induced on rational homotopy groups by ω in terms of (generalized) derivation spaces and adjoint maps. As a consequence, we obtain a unified description of the rational homotopy theory of function spaces, at...

متن کامل

Nerves, fibers and homotopy groups

Two theorems are proved. One concerns coverings of a simplicial complex D by subcomplexes. It is shown that if every t-wise intersection of these subcomplexes is ðk t þ 1Þ-connected, then for jpk there are isomorphisms pjðDÞDpjðNÞ of homotopy groups of D and of the nerve N of the covering. The other concerns poset maps f : P-Q: It is shown that if all fibers f ðQpqÞ are kconnected, then f induc...

متن کامل

Cyclic group actions on manifolds from deformations of rational homotopy types

This paper nishes the series 12, 16, 17] of papers that aim to show the existence of non-trivial group actions (\symmetries") on certain classes of manifolds. More speciically, we ask whether there is a semifree smooth action of the circle group T = S 1 { resp., a non-trivial action of a cyclic group Z=p; p a prime { on a given manifold X with a xed point set of a given rational homotopy type F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003